dc.contributor.author |
GANGOPADHYAY, CHANDRANANDAN |
en_US |
dc.contributor.author |
Sebastian, Ronnie |
en_US |
dc.date.accessioned |
2025-04-15T06:52:36Z |
|
dc.date.available |
2025-04-15T06:52:36Z |
|
dc.date.issued |
2024-06 |
en_US |
dc.identifier.citation |
International Mathematics Research Notices, 2024(11), 9194-9217. |
en_US |
dc.identifier.issn |
1073-7928 |
en_US |
dc.identifier.issn |
1687-0247 |
en_US |
dc.identifier.uri |
https://doi.org/10.1093/imrn/rnae028 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9543 |
|
dc.description.abstract |
Let C be a smooth projective curve over the field of complex numbers C of genus g(C) > 0. Let E be a locally free sheaf on C of rank r and degreee. Let Q := Quot(C/C)(E, k, d) denote the Quot scheme of quotients of E of rank k and degreed. Fork > 0 and d >> 0, we compute the Picard group of Q. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Oxford University Press |
en_US |
dc.subject |
Parametrized Rational Curves |
en_US |
dc.subject |
Bundles |
en_US |
dc.subject |
Moduli |
en_US |
dc.subject |
Space |
en_US |
dc.subject |
Maps |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Picard Groups of Some Quot Schemes |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Mathematics Research Notices |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |