dc.contributor.author |
BHIMANI, DIVYANG |
en_US |
dc.contributor.author |
Gou, Tianxiang |
en_US |
dc.contributor.author |
Hajaiej, Hichem |
en_US |
dc.date.accessioned |
2025-04-15T06:52:37Z |
|
dc.date.available |
2025-04-15T06:52:37Z |
|
dc.date.issued |
2024-07 |
en_US |
dc.identifier.citation |
Mathematische Nachrichten, 297, (07), 2543-2580. |
en_US |
dc.identifier.issn |
0025-584X |
en_US |
dc.identifier.issn |
1522-2616 |
en_US |
dc.identifier.uri |
https://doi.org/10.1002/mana.202200443 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9549 |
|
dc.description.abstract |
In this paper, we consider solutions to the following nonlinear Schrodinger equation with competing Hartree-type nonlinearities, -Delta u + lambda u = (|x|(-gamma)(1) * |u|(2))u - (|x|(-gamma)(2) * |u|(2))u in R-N, under the L-2-norm constraint integral(N)(R) |u|(2) dx = c > 0, where N >= 1, 0 < gamma(2) < gamma(1) < min{N,4}, and lambda is an element of R appearing as Lagrange multiplier is unknown. First, we establish the existence of ground states in the mass subcritical, critical, and supercritical cases. Then, we consider the well-posedness and dynamical behaviors of solutions to the Cauchy problem for the associated time-dependent equations. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Wiley |
en_US |
dc.subject |
Ground states |
en_US |
dc.subject |
Hartree nonlinearities |
en_US |
dc.subject |
Normalized solutions |
en_US |
dc.subject |
Variational methods |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Normalized solutions to nonlinear Schrodinger equations with competing Hartree-type nonlinearities |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Mathematische Nachrichten |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |