Digital Repository

Infinitesimal Deformations of Some Quot Schemes, II

Show simple item record

dc.contributor.author Biswas, Indranil en_US
dc.contributor.author GANGOPADHYAY, CHANDRANANDAN en_US
dc.contributor.author Sebastian, Ronnie en_US
dc.date.accessioned 2025-04-15T06:53:30Z
dc.date.available 2025-04-15T06:53:30Z
dc.date.issued 2024-05 en_US
dc.identifier.citation International Mathematics Research Notices, 2024(09), 8067–8100. en_US
dc.identifier.issn 1073-7928 en_US
dc.identifier.issn 1687-0247 en_US
dc.identifier.uri https://doi.org/10.1093/imrn/rnae033 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9555
dc.description.abstract Let $E$ be a vector bundle on a smooth complex projective curve $C$ of genus at least two. Let $\mathcal{Q}(E,d)$ be the Quot scheme parameterizing the torsion quotients of $E$ of degree $d$. We compute the cohomologies of the tangent bundle $T_{\mathcal{Q}(E,d)}$. In particular, the space of infinitesimal deformations of $\mathcal{Q}(E,d)$ is computed. Kempf and Fantechi computed the space of infinitesimal deformations of $\mathcal{Q}({\mathcal O}_{C},d)\,=\, C<^>{(d)}$ [ , ]. en_US
dc.language.iso en en_US
dc.publisher Oxford University Press en_US
dc.subject Surfaces en_US
dc.subject Bundles en_US
dc.subject 2024 en_US
dc.title Infinitesimal Deformations of Some Quot Schemes, II en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle International Mathematics Research Notices en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account