dc.contributor.author |
Biswas, Indranil |
en_US |
dc.contributor.author |
GANGOPADHYAY, CHANDRANANDAN |
en_US |
dc.contributor.author |
Sebastian, Ronnie |
en_US |
dc.date.accessioned |
2025-04-15T06:53:30Z |
|
dc.date.available |
2025-04-15T06:53:30Z |
|
dc.date.issued |
2024-05 |
en_US |
dc.identifier.citation |
International Mathematics Research Notices, 2024(09), 8067–8100. |
en_US |
dc.identifier.issn |
1073-7928 |
en_US |
dc.identifier.issn |
1687-0247 |
en_US |
dc.identifier.uri |
https://doi.org/10.1093/imrn/rnae033 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9555 |
|
dc.description.abstract |
Let $E$ be a vector bundle on a smooth complex projective curve $C$ of genus at least two. Let $\mathcal{Q}(E,d)$ be the Quot scheme parameterizing the torsion quotients of $E$ of degree $d$. We compute the cohomologies of the tangent bundle $T_{\mathcal{Q}(E,d)}$. In particular, the space of infinitesimal deformations of $\mathcal{Q}(E,d)$ is computed. Kempf and Fantechi computed the space of infinitesimal deformations of $\mathcal{Q}({\mathcal O}_{C},d)\,=\, C<^>{(d)}$ [ , ]. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Oxford University Press |
en_US |
dc.subject |
Surfaces |
en_US |
dc.subject |
Bundles |
en_US |
dc.subject |
2024 |
en_US |
dc.title |
Infinitesimal Deformations of Some Quot Schemes, II |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
International Mathematics Research Notices |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |