dc.contributor.author |
BHIMANI, DIVYANG G. |
|
dc.contributor.author |
Haque, Saikatul |
|
dc.contributor.editor |
Cardona, Duván |
|
dc.contributor.editor |
Restrepo, Joel |
|
dc.contributor.editor |
Ruzhansky, Michael |
|
dc.date.accessioned |
2025-04-17T09:25:03Z |
|
dc.date.available |
2025-04-17T09:25:03Z |
|
dc.date.issued |
2024-02 |
|
dc.identifier.citation |
Extended Abstracts 2021/2022 - Methusalem Lectures, 67–73. |
en_US |
dc.identifier.isbn |
978-3-031-48578-7 |
|
dc.identifier.isbn |
978-3-031-48579-4 |
|
dc.identifier.uri |
https://doi.org/10.1007/978-3-031-48579-4_7 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9628 |
|
dc.description.abstract |
We have established (a weak form of) ill-posedness for the KdV-Burgers equation on a real line in Fourier amalgam spaces w^sp,q with s<−1. The particular case p=q=2 recovers the result in Molinet and Ribaud (Int. Math. Res. Not. 2002:1979–2005 (2002)). The result is new even in Fourier Lebesgue space ℱLsq which corresponds to the case p=q(≠2) and in modulation space Ms2,q which corresponds to the case p=2,q≠2. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
2024 |
en_US |
dc.subject |
Fourier amalgam spaces |
en_US |
dc.subject |
Fourier-Lebesgue spaces |
en_US |
dc.subject |
Ill-posedness |
en_US |
dc.subject |
Korteweg-de Vries-Burgers (KdV-B) equation |
en_US |
dc.subject |
Modulsation spaces |
en_US |
dc.title |
Remark on the Ill-Posedness for KdV-Burgers Equation in Fourier Amalgam Spaces |
en_US |
dc.type |
Book chapter |
en_US |
dc.type |
Conference Papers |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.title.book |
Extended Abstracts 2021/2022 - Methusalem Lectures |
en_US |
dc.identifier.doi |
https://doi.org/10.1007/978-3-031-48579-4_7 |
en_US |
dc.identifier.sourcetitle |
Extended Abstracts 2021/2022 - Methusalem Lectures |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |