Digital Repository

Using rare event algorithms to understand the statistics and dynamics of extreme heatwave seasons in South Asia

Show simple item record

dc.contributor.author Priol, Clément Le en_US
dc.contributor.author MONTEIRO, JOY MERWIN en_US
dc.contributor.author Bouchet, Freddy en_US
dc.date.accessioned 2025-04-22T09:46:11Z
dc.date.available 2025-04-22T09:46:11Z
dc.date.issued 2024-12 en_US
dc.identifier.citation Environmental Research: Climate, 3(04). en_US
dc.identifier.issn 2752-5295 en_US
dc.identifier.uri https://doi.org/10.1088/2752-5295/ad8027 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9710
dc.description.abstract Computing the return times of extreme events and assessing the impact of climate change on such return times is fundamental to extreme event attribution studies. However, the rarity of such events in the observational record makes this task a challenging one, even more so for 'record-shattering' events that have not been previously observed at all. While climate models could be used to simulate such extremely rare events, such an approach entails a huge computational cost: gathering robust statistics for events with return time of centuries would require a few thousand years of simulation. In this study, we use an innovative tool, rare event algorithm, that allows us to sample numerous extremely rare events at a much lower cost than direct simulations. We employ the algorithm to sample extreme heatwave seasons, corresponding to large anomalies of the seasonal average temperature, in a heatwave hotspot of South Asia using the global climate model Plasim. We show that the algorithm estimates the return levels of extremely rare events with much greater precision than traditional statistical fits. It also enables the computation of various composite statistics, whose accuracy is demonstrated through comparison with a very long control run. In particular, our results reveal that extreme heatwave seasons are associated with an anticyclonic anomaly embedded within a large-scale hemispheric quasi-stationary wave-pattern. Additionally, the algorithm accurately represents the intensity-duration-frequency statistics of sub-seasonal heatwaves, offering insights into both seasonal and sub-seasonal aspects of extreme heatwave seasons. This innovative approach could be used in extreme event attribution studies to better constrain the changes in an event's probability and intensity with global warming, particularly for events with return times spanning centuries or millennia. en_US
dc.language.iso en en_US
dc.publisher IOP Publishing en_US
dc.subject Heatwave seasons en_US
dc.subject South Asia en_US
dc.subject 2024 en_US
dc.title Using rare event algorithms to understand the statistics and dynamics of extreme heatwave seasons in South Asia en_US
dc.type Article en_US
dc.contributor.department Dept. of Earth and Climate Science en_US
dc.identifier.sourcetitle Environmental Research: Climate en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account