Digital Repository

A ruled residue theorem for function fields of elliptic curves

Show simple item record

dc.contributor.author Becher, Karim Johannes en_US
dc.contributor.author GUPTA, PARUL en_US
dc.contributor.author Mishra, Sumit Chandra en_US
dc.date.accessioned 2025-04-22T09:48:53Z
dc.date.available 2025-04-22T09:48:53Z
dc.date.issued 2024-03 en_US
dc.identifier.citation Journal of Pure and Applied Algebra, 228(03), 107492. en_US
dc.identifier.issn 1873-1376 en_US
dc.identifier.issn 0022-4049 en_US
dc.identifier.uri https://doi.org/10.1016/j.jpaa.2023.107492 en_US
dc.identifier.uri http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9715
dc.description.abstract It is shown that a valuation of residue characteristic different from 2 and 3 on a field E has at most one extension to the function field of an elliptic curve over E, for which the residue field extension is transcendental but not ruled. The cases where such an extension is present are characterised. en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.subject Mathematics en_US
dc.subject 2024 en_US
dc.title A ruled residue theorem for function fields of elliptic curves en_US
dc.type Article en_US
dc.contributor.department Dept. of Mathematics en_US
dc.identifier.sourcetitle Journal of Pure and Applied Algebra en_US
dc.publication.originofpublisher Foreign en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Repository


Advanced Search

Browse

My Account