dc.contributor.author |
BISWAS, ANUP |
en_US |
dc.contributor.author |
Quaas, Alexander |
en_US |
dc.contributor.author |
Topp, Erwin |
en_US |
dc.date.accessioned |
2025-05-09T06:31:12Z |
|
dc.date.available |
2025-05-09T06:31:12Z |
|
dc.date.issued |
2025-10 |
en_US |
dc.identifier.citation |
Journal of Functional Analysis, 289(08). |
en_US |
dc.identifier.issn |
0022-1236 |
en_US |
dc.identifier.uri |
https://doi.org/10.1016/j.jfa.2025.111008 |
en_US |
dc.identifier.uri |
http://dr.iiserpune.ac.in:8080/xmlui/handle/123456789/9810 |
|
dc.description.abstract |
In this article we consider a large family of nonlinear nonlocal equations involving gradient nonlinearity and provide a unified approach, based on the Ishii-Lions type technique, to establish Liouville properties of the solutions. We also answer an open problem raised by Cirant and Goffi [24]. Some applications to regularity issues are also studied. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Elsevier B.V. |
en_US |
dc.subject |
Lipschitz regularity |
en_US |
dc.subject |
Bernstein estimate |
en_US |
dc.subject |
Nonexistence |
en_US |
dc.subject |
Hamilton-Jacobi equations |
en_US |
dc.subject |
2025-MAY-WEEK1 |
en_US |
dc.subject |
TOC-MAY-2025 |
en_US |
dc.subject |
2025 |
en_US |
dc.title |
Nonlocal Liouville theorems with gradient nonlinearity |
en_US |
dc.type |
Article |
en_US |
dc.contributor.department |
Dept. of Mathematics |
en_US |
dc.identifier.sourcetitle |
Journal of Functional Analysis |
en_US |
dc.publication.originofpublisher |
Foreign |
en_US |